

CLASS : XIth DATE : SUBJECT : MATHS DPP NO. :1

Topic:-mathematical reasoning

1. *H*:Set of holiday, *S*: Set of Sunday and *U*:Set of day's

Then, the Venn diagram of statement, 'Every Sunday implies holiday' is

9. A compound sentence formed by two simple statements p and q using connective 'or' is called
a) Conjunctionb) Disjunctionc) Implicationd) None of these

10.	If p and q are two state a) $p \land \sim q$	ements, then $p \lor (p \Rightarrow b) p$	~ q) is equivalent to c) q	d) ~ $p \wedge q$
11.		$q) \lor (p \land r)$. Then, this label{eq:product of the second strength}. Then, this label{eq:product of the second strength}	aw is known as c) De-Morgan's law	d)Distributive law
12.	If <i>p</i> and <i>q</i> are two statements, then statement <i>q</i> a) Tautology c) Neither tautology not contradiction		$p \Rightarrow q \land \sim q$ is b)Contradiction d)None of the above	
13.	Which of the following a) $p \land q$	g is logically equivalent t b) p ∧~ q	$0 \sim (\sim p \rightarrow q)?$ c) ~ p \land q	d)~ $p \land ~ q$
14.	The statement $(p \Rightarrow q)$ a) Tautology	$(\sim p \land q)$ is a b) Contradiction	c) Neither (a) nor (b)	d)None of these
15.	A compound sentence a) Conjunction	formed by two simple s b) Disjunction	tatements <i>p</i> and <i>q</i> using c) Implication	connective 'and' is called d)None of these
 16. Let <i>p</i>: is not greater than and <i>q</i>: Pairs is in France Be two statements. Then, ~(<i>p</i> ∨ <i>q</i>) is the statement a) 7 is greater than or Pairs is not in France b) 7 is not greater than 4 and Pairs is not in France c) 7 is greater than 4 and Pairs is in France d) 7 is greater than 4 and Pairs is not in France 17. If <i>p</i> and <i>q</i> are two simple propositions, then <i>p</i> ↔ ~<i>q</i> is true when a) <i>p</i> and<i>q</i> both are true 				
	 b) Both p and q are fals c) p is false and q is tr d) None of these 	se		
18.	 Negation of "Pairs is in France and Londan is in England" is a) Pairs is in England and Londan is in France b) Pairs is not in France or Londan is not in England c) Pairs is in England or Londan is in France d) None of the above 			
19.	If truth value of <i>p</i> ∨ <i>q</i> i a) False if <i>p</i> is true	s true, then truth value o b) True if <i>p</i> is true	of $\sim p \land q$ is c) False if q is true	d)True if <i>q</i> is true
20.		at proposition of $p \Leftrightarrow q$ b) $(p \Rightarrow q) \land (q \Rightarrow p)$		d) $(p \land q) \Rightarrow (p \lor q)$